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REMINDER: TUNNELING

Quantum particles can penetrate into regions where classical motion is forbidden. For example, consider a rect-
angular potential barrier. To the left of the barrier, the motion is free. To the right of the barrier, the Shroedinger
equation reads

−h̄2 d
2ψ

dx2
+ V0ψ = Eψ. (1)

Classically, the motion is forbidden for energies smaller than the barrier height. The quantum-mechanical wave-
function is not equal to zero, however. Re-arranging the terms in the equation above, we get

−d
2ψ

dx2
=

2m

h̄2
(E − V0)ψ. (2)

This looks like a simple harmonic oscillator equation in Classical Mechanics (upon replacement x → t and 2m
h̄2 (E −

V0) → ω2); however, the sign of the coefficient in front of ψ on the right-hand side depends on the relation between
V0 and E. For E > V0, the sign is positive. Then this is really a simple harmonic oscillator equation which solutions
being ψ = C exp(ikx), where k =

√

2m(E − V0)/h̄ is the wavenumber. Since the wavenumber is real, the real and
imaginary parts of the wave-function oscillate in space. For E < V0, the sign is negative. The solution formally
remains the same but now k, being the root of a negative number, is imaginary:

k =
√

2m(E − V0)/h̄ =
√

−2m(V0 − E)/h̄ = i
√

2m(V0 − E)/h̄ ≡ iκ. (3)

Consequently, the wave-function ψ = C exp(ikx) = C exp(i(iκ)x) = C exp(−κx) falls off exponentially with distance
inside the barrier. (Notice that we have chosen the the square root with positive imaginary part. Another mathe-
matically possible choice k = −iκ would result in the wave-function ψ = C exp(κx) which grows exponentially with
x. Such a solution is not permissible and therefore discarded.)
As a specific example, you can think of of a square well [1].: U0(x) = 0 for 0 < x < d and U(x) = U0 for

x < 0 and for x > d (green line in Fig. 5) If the potential energy outside the well were infinite, the wave-function
ψ0(x) =

√

2/d sin(πx/d) (blue line), corresponding to the lowest energy eigenstate E0 = π2/2md2, would vanish
at both boundaries of the well. If the potential energy is finite but large (U0 ≫ E0), the wave-function inside
the well acquires a small phase shift δ ≈

√

E0/V0, and the wavenumber inside the well changes to k = π/d − 2δ:

ψ0(x) =
√

2/d sin [(π − 2δ)x/d+ δ]. The wave-function does not vanish anymore at x = 0, d but is small there in

proportion to δ: ψ(0) = ψ(d) =
√

2/d sin(δ) ≈
√

2/dδ. Outside the well, the wave-function falls off exponentially

fast: ψ0(x)|x≥d =
√

2/dδ exp(−κ(x− d)) and ψ(x)|x≤0 =
√

2/dδ exp(κx), where κ =
√

2m(U0 − E0)/h̄ ≈
√
2mU0/h̄.

The actual profile of the wave-function is shown by the red line.

DOUBLE-WELL SYSTEM

As a first step towards building a crystal, we consider a double-well system. When the wells are separated, they
have discrete energy levels E0, E1 . . . and corresponding wave functions ψ0(x), ψ1(x) . . .. Now we place two wells at a
distance a (see Fig.2), which is larger than the localization radius of the wave-function, and focus only on the lowest
energy state. The wave-functions of the states localized in the individual wells overlap only slightly. However weak
the overlap is, it does nevertheless give rise to a new effect: splitting of the energy levels.
In what follows, the actual form of the potential does not matter; instead of two square wells, we can think of a

smooth Mexican-hat–like potential in Fig. 3, represented by a sum of two single-well potentials

U(x) = U0(x) + U0(−x). (4)
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FIG. 1: Green: square-well potential. Blue: the wave-function for the case of infinite potential barrier outside the well. Red:
the wave-function for large but finite potential barrier.

FIG. 2: Green: potential of two square wells. Blue and red: wave-functions localized in the individual wells.

The wave-function of a double-well system can be represented by either symmetric or asymmetric combination of
the single-well wave-functions

ψs,a =
1√
2
[ψ0(x)± ψ0(−x)] . (5)

The single-well wave function satisfies the Schroedinger equation

− h̄2

2m
ψ0

′′ + U0(x)ψ0(x) = E0ψ0(x). (6)

However, neither ψ0 nor E0 would change significantly if we add the potential of other well to this equation, because
its effect on the wave function in the first well is very small. Thus we replace U0(x) → U0(x) +U0(−x) = U(x) in Eq.
(6) so it becomes

− h̄2

2m
ψ0

′′ + U(x)ψ0(x) = E0ψ0(x). (7)
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FIG. 3: A smooth double-well potential with the first two energy levels in the absence of splitting.

The wave functions of the individual wells are normalized to unity in the entire space
∫ ∞

−∞

dxψ2

0
(x) = 1 (8)

(the wave-functions of the 1D problem can always be chosen real, so we do not make a distinction between ψ0 and
ψ∗
0
). However, since the wave function is localized well in the right half-axis, the normalization condition can be

applied only to the half-axis
∫ ∞

0

dxψ2

0
(x) ≈ 1. (9)

The symmetric/asymmetric wave-functions ψs,a are the solutions of the exact Schroedinger equation for the double-
well system, for example,

− h̄2

2m
ψs,a

′′ + U(x)ψs,a(x) = Es,aψs(x), (10)

where Es,a are the corresponding energy levels which differ from E0. To find the new energy levels, we multiply the
equation for ψ0 (7) by, e.g., ψs, and the equation for ψs by ψ0, the subtract the resulting equations from each other,
and integrate the difference of the two equations over x from 0 to ∞. The potential energy term vanishes, while the
rest of the equation reads

(Es − E0)

∫ ∞

0

dxψ0ψs = − h̄2

2m

∫ ∞

0

dx
(

ψ
′′

s ψ0 − ψ
′′

0
ψs

)

(11)

Substituting ψs into the integral in the right-hand side of the equation above, we obtain
∫ ∞

0

dxψ0(x)ψs(x) =
1√
2

∫ ∞

0

ψ0(x) [ψ0(x) + ψ0(−x)] ≈
1√
2

∫ ∞

0

ψ2

0
(x) ≈ 1√

2
, (12)

where we neglected the term ψ0(x)ψ0(−x) as it corresponds to overlap of the wave-functions localized in different
wells. Integrating by parts in the left-hand side (taking into account that ψ0(∞) = ψs(∞) = 0), we obtain

1√
2
(Es − E0) = − h̄2

2m
[ψ′

0
(0)ψs(0)− ψ′

s(0)ψ0(0)] . (13)
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FIG. 4: Splitting of the energy levels in a double-well system.

According to Eq. (5), ψs(0) =
√
2ψ0(0) whereas

ψ′
s(x) =

1√
2
[ψ′

0
(x) − ψ′

0
(−x)] (14)

and, therefore, ψ′
s(0) = 0. Then

Es = E0 −
h̄2

m
ψ′
0
(0)ψ0(0) ≡ E0 − 2t. (15)

Notice that ψ′
0
(0) > 0, so that Es > E0. Likewise,

Ea = E0 +
h̄2

m
ψ′
0
(0)ψ0(0) ≡ E0 + 2t, (16)

and Ea < E0.
As a result, a single-well energy level splits into two levels separated by Es−Et = 4t. The energy t is exponentially

small because both ψ0(0) and ψ
′
0
(0) are exponentially small. Likewise, the higher energy states (E1 . . .) also get split.

TIGHT-BINDING MODEL

The tight-binding model for a 1D chain of atoms is a straightforward generalization of the double-well model,
except for we need to take into account the Bloch theorem, which states that wave-function of an electron in a
periodic potential must satisfy the following property

Ψk(x+ a) = exp(ika)Ψ(x). (17)

We construct the wave-function for the chain a linear superposition of atomic wave-functions localized at atomes
located at x = na

Ψk(x) =

n=∞
∑

n=−∞

ψ0(x− na) exp(ikna). (18)
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It is easy to see that the wave-function in Eq. (18) does satisfy the Bloch theorem. Indeed,

Ψ(x+ a) =
n=∞
∑

n=−∞

ψ0(x+ a− na) exp(ikna) = exp(ika)
n′

=∞
∑

n′=−∞

ψ0(x− n′a) exp(ikn′a) = exp(ika)Ψ(x), (19)

where we relabeled n′ = n− 1. Notice that the Bloch wave-function is, in general, complex. The Bloch wave-function
satisfies the Schroedinger equation

− h̄2

2m
Ψ′′

k +
n=∞
∑

n=−∞

U0(x− na)Ψ(x) = EkΨk(x), (20)

where U0(x) is the single-atom potential. The atomic wave-function satisfies Eq. (6) where, as in the double-well
problem, we can replace U0 by the potential produced by all atoms without any significant changes. Therefore,

− h̄2

2m
ψ0

′′ +
n=∞
∑

n=−∞

U0(x− na)ψ0(x) = E0ψ0(x). (21)

Now we perform the same operations as for the double-well problem: 1) multiply Eq. (20) by ψ0; 2) multiply Eq. (21)
by Ψ∗

k; subtract the resulting equations; and 4) integrate the rest over one lattice period −a/2 ≤ x ≤ a/2. This yields

(Ek − E0)

∫ a/2

−a/2

dxΨkψ0 = − h̄2

2m

∫ a/2

−a/2

dx [Ψ′′
kψ0 − ψ′′

0
Ψ∗

k] (22)

Integrating by parts,

(Ek − E0)

∫ a/2

−a/2

dxΨkψ0 = − h̄2

2m
[Ψ′

k(a/2)ψ0(a/2)−Ψ′
k(−a/2)ψ0(−a/2)− ψ′

0
(a/2)Ψ∗

k(a/2) + ψ′
0
(−a/2)Ψ∗

k(−a/2)]

(23)
The integral in the left-hand side reads

∫ a/2

−a/2

dxΨkψ0 =

∫ a/2

−a/2

dx
∑

n

exp(ikna)ψ0(x− na)ψ0(x). (24)

The largest term in the sum is n = 0, which corresponds to overlap of the wave-functions on the same atom. Also,
since a is much larger than the radius of the wave-function localization, the limits of the integration can extended to
±∞. As a result, the left-hand side simply reduces to Ek − E0.
As far as the right-hand side is concerned, the algebra is simplified if we consider the cases of even and odd functions

ψ0 separately. If ψ0 is even, ψ0(−a/2) = ψ0(a/2), while ψ
′
0
(−a/2) = −ψ′

0
(a/2). The Bloch function also has certain

properties, namely

Ψk(−x) =
∑

n

ψ0(−x− na) exp(ikna) =
∑

n

ψ0(x+ na) exp(ikna) =
∑

n

ψ0(x− na) exp(−ikna) = Ψ∗
k(x) (25)

and

Ψk(−x) =
∑

n

ψ′
0
(−x− na) exp(ikna) = −

∑

n

ψ′
0
(x+ na) exp(ikna) = −

∑

n

ψ′
0
(x− na) exp(−ikna) = −Ψ∗

k(x) (26)

Using these properties, we reduce the combination of the wave-functions to

ψ0(a/2)
[

Ψ′
k(a/2) + (Ψ′

k(a/2))
∗]− ψ′

0
(a/2)

[

Ψk(a/2) + (Ψk(a/2))
∗
]

(27)

Consider the first term

ψ0(a/2)Ψ
′
k(a/2) = ψ0(a/2)

∑

n

ψ′
0
(a/2− na) exp(ikna). (28)

The wave-function and its derivative are localized at x = 0. The derivatives of the wave-functions in the sum have
the largest value when their arguments are closest to zero, i.e., for n = 0 and n = 1. Therefore,

ψ0(a/2)Ψ
′
k(a/2) ≈ ψ0(a/2) [ψ

′
0
(a/2) + ψ′

0
(−a/2) exp(ika)] = ψ0(a/2)ψ

′
0
(a/2)[1− exp(ika)]. (29)
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FIG. 5: The first two bands of the tight-binding model.

The second term is just a complex-conjugate to the first one, thus

ψ0(a/2)
[

Ψ′
k(a/2) + (Ψ′

k(a/2))
∗]

= 2ψ0(a/2)ψ
′
0
(a/2)[1− cos(ka)]. (30)

Likewise,

ψ′
0
(a/2)Ψk(a/2) ≈ ψ′

0
(a/2) [ψ0(a/2) + ψ0(−a/2) exp(ika)] = ψ′

0
(a/2)ψ0(a/2) [1 + exp(ika)] (31)

Collecting everything together, we obtain the spectrum of the tight-binding model

Ek = E0 + 2
h̄2

m
ψ′
0
(a/2)ψ0(a/2) cos(ka). (32)

Notice that ψ′
0
(a/2) < 0, therefore the spectrum can be written that

Ek = E0 − 2t cos(ka) = E0 − 2t+ 2t [1− cos(ka)] . (33)

where t ≡ − h̄2

mψ′
0
(a/2)ψ0(a/2) > 0 is the ”hopping energy”. Now, if the atomic wave-function is odd, the sign in the

spectrum is changed

Ek = E0 + 2t cos(ka) = E0 + 2t− 2t [1− cos(ka)] (34)

The first term in Eqs. (??) is an energy shift which can be omitted. With that, the spectrum acquires a particularly
simple form

Ek = ±2t [1− cos(ka)] , (35)

where ± corresponds to even/odd atomic wave-functions. Notice that Ek is periodic in the k space, in accord with
the Bloch theorem. Instead of the entire k space, we need to consider only the first Brillouin zone −π/a ≤ k ≤ π/a.
The bandwidth is 4t.
Suppose that ψ0 is the ground state and is, therefore, even.The next band occurs because of the overlap of higher-

energy states. In 1D model, the wave-functions alternate between even and odd, in such a way the ground state
wave-function is always even. Therefore, the band resulting from the overlap of the first excited state has an opposite
sign in the dispersion (Fig. ??). For the first two bands (restoring the constant energy shift in the second band)

E0

k = 2t0 [1− cos(ka)]

E1

k = E1 − E0 + 2t1 − 2t0 + 2t1 [1− cos(ka)] (36)

where t0,1 are the hopping energies.
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[1] See Griffiths, Introduction to Quantum Mechanics, p. 60


